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Coherent structures in coupled map lattices
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We report the observation of coherent structures in coupied map lattices. The coherent structures
are defined as those in which the values of the dynamical variables follow a certain pattern. As the
coupling parameter increases larger size coherent structures are observed. Also the number of
structures with a given size or lifetime is found to increase.

PACS number(s): 05.45.+b, 47.52.4j

Despite dedicated efforts of many scientists over sev-
eral decades, turbulence continues to remain as one of the
least understood phenomena. The temporal and spatial
complexity of the evolution of turbulent systems have
defied attempts to understand turbulence in natural and
man-made systems. In recent years the study of nonlin-
ear dynamical systems has come up as a scientific disci-
pline which might possess the potential to explain phe-
nomena associated with turbulence. So far most of the
studies in this field have been directed towards under-
standing the temporal complexity of the evolution of sys-
tems with few degrees of freedom. But turbulence is a
phenomenon associated with spatially extended systems
with a large number of degrees of freedom and hence the
modeling and characterization of spatiotemporal systems
is important in the study of turbulence. Spatiotemporal
systems have applications in many important fields of sci-
ence, such as fluid dynamics, solid state physics, optics,
chemistry, biology, pattern formation problems, etc. The
model of coupled map lattices (CML) was introduced as
a simple model with the essential features of spatiotem-
poral chaos [1-3]. There have been a number of studies of
CML as a spatially extended system capable of complex
spatiotemporal behavior and also as a model which can
mimic natural phenomena [1-10]. The model of coupled
map lattices shows many interesting phenomena, such
as kink dynamics, solitons, frozen random patterns, pe-
riodic patterns, traveling wave solutions, intermittency,
chaos, etc.

One of the most interesting phenomena associated with
turbulence is the appearance of coherent structures in
turbulent fluids [11-16]. Coherent structures have been
widely observed, especially in experiments in hydrody-
namics. These structures appear in spite of the fact that
the evolution of the system is spatially and temporally
chaotic. The picture we get is that of a spatiotemporally
chaotic fluid in which coherent structures are embedded
randomly in space and time [16].

In this Brief Report we attempt to capture some im-
portant features of coherent structures in extended dy-
namical systems by using one dimensional coupled map
lattices. We report the observation of structures appear-
ing in this model which are correlated over some distance
and remain correlated for some time.

We consider coupled map lattices with symmetric near-
est neighbor coupling. We specifically take the model
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where z4(2) is the value of the dynamic variable at time ¢
for the lattice site i. The lattice sizeis L,1=1,2,...,L,
and we use periodic boundary conditions. The func-
tion f defines a nonlinear evolution such that z;11(%)
remains bounded. The coupling parameter € determines
the strength of coupling between neighboring lattice sites.
This model has been studied extensively in different con-
texts. Some of the phenomena mentioned above, such
as kink dynamics, solitons, frozen random patterns, pe-
riodic patterns, traveling wave solutions, intermittency,
chaos, etc., have been identified in this model [6,7]. Spa-
tially and temporally periodic behavior and spatiotempo-
ral periodic windows were identified recently [10]. Some
of the earlier studies established the relationship between
the positive Lyapunov exponent and the spatial correla-
tion length [17,18].

We define a coherent structure as a region of space in
which the dynamic variables at sites in this region follow
a predefined spatial pattern. In this Brief Report we have
studied two spatial patterns: Pattern A: In this pattern
the difference in the values of the dynamical variables
for the neighboring sites is less than a given small pos-
itive number, say, §, i.e., |z:(¢) — z:(¢ + 1)| < &, where
both sites ¢ and 7 + 1 belong to the pattern. We call
6 the coherence parameter. Pattern B: In this pattern
the values of all the dynamical variables are within § of
each other, i.e., |z:(7) — z¢(j)| < 8, where ¢ and j are
any two sites belonging to the pattern. We look for such
patterns appearing in the evolution of the model given
by Eq. (1). We observe that coherent structures defined
by these patterns indeed appear in the course of evolu-
tion of Eq. (1). As the system evolves in time we find
that even though the parameter for the evolution of each
lattice site is in the fully developed chaotic regime, struc-
tures whose constituent lattice sites evolve in a coherent
way appear in the system. This is in spite of the fact
that the system as a whole exhibits spatial and temporal
chaos. These coherent structures appear everywhere in
the system, without any preferred positions. The struc-
tures persist for a time proportional to their spatial ex-
tent. The destruction of the structures is caused either
by a gradual withering away or by splitting into smaller
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structures.
We illustrate our procedure using some simple maps.
First consider the logistic map for the function f,

f(z) = pa(l — z), (2)

where p is the logistic map parameter. The values we se-
lect for the parameter p correspond to chaotic solutions
of the uncoupled logistic map. The size of the system L is
taken to be sufficiently large to minimize finite size effects
and to get the results independent of the system size.
Also, we choose the coupling parameter € and the system
size to ensure that the dynamics of CML is chaotic. In
Fig. 1 we plot the variable values of the lattice sites at the
same time for a region of the lattice. Three of the pattern
A structures formed in this region are identified. Figure 2
shows the number of structures IV of pattern A against
the structure size S. The size of a structure S is defined
as the maximum size it acquires in its evolution. Once a
structure is identified, it is followed in time until it disap-
pears and is counted only once during its evolution. The
results shown are for a lattice of size L = 500. The logis-
tic map parameter u = 4.0, which corresponds to fully
developed chaos for the uncoupled case. The curves cor-
responding to different values of the coupling parameter
are compared with the distribution arising from the for-
mation of structures in the lattice without coupling, i.e.,
e = 0.0. It is clearly seen that the number of structures
formed with different values of coupling is considerably
higher than that in the uncoupled case. Also note that
structures of much larger sizes are formed with coupling
as compared to the uncoupled case. As the strength of
the coupling is increased more and more structures are
formed. For still larger values of € there is a decrease in
the number of structures formed. For intermediate val-
ues of S, the figure shows a linear behavior of In N vs S,
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FIG. 1. The values of the dynamical variables are plotted
as a function of the lattice sites for the logistic map lattice.
Only a portion of the lattice is shown in the figure. The entire
lattice consists of 500 lattice sites. The snapshot figure is
what we get after 5000 initial transients are over. The system
parameters are u = 4, € = 0.6. The coherence parameter ¢ is
taken as 0.01. One structure of size 12 and two structures of
size 3 of pattern A are identified in the figure with the help
of small vertical lines.

BRIEF REPORTS 51

FIG. 2. The number of coherent structures is shown as a
function of the maximum size of a structure for logistic map
lattice with 4 = 4.0. The curves correspond to different values
of the coupling parameter (a) € = 0.0, (b) € = 0.4, (c) € = 0.5,
(d) € = 0.6, (¢) € = 0.7, and (f) ¢ = 0.9. The lattice size
L = 500. The coherence parameter 6 = 0.01. The data
obtained is for 100 different realizations of CML with random
initial conditions and 40 000 iterations in each case.

i.e., the number of structures falls exponentially with the
structure size. For the coupled system there is a devia-
tion for large size structures and their number is larger
than the one indicated by an exponential fall.

Figure 3 shows the distribution of the number of struc-
tures N against the lifetime T of structures. The lifetime
T of a structure is the number of time steps for which the
structure persists. The logistic map parameter u = 4.0.
The distributions with coupling parameter ¢ = 0.5 and
€ = 0.7 are compared with the uncoupled case ¢ = 0.0.
It is seen that the number of structures lasting for each
time in the coupled case is more than that in the un-
coupled case. Also, the maximum lifetime observed for
the coupled case is larger than the uncoupled case. Ex-
cept for very large and very small lifetimes the number of
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FIG. 3. The distribution of the number of structures is
shown against the lifetime for the logistic map lattice. The
system parameters and the data are the same as in Fig. 2.
The distribution for (a) e = 0.0, (b) € = 0.5, and (c) ¢ = 0.7
are shown.
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FIG. 4. The distribution of structures is shown as a func-
tion of structure size for the tent map lattice. The map pa-
rameter a = 1.0. The lattice size L = 500 and the coherence
parameter § = 0.01. The values of the coupling parameter
are (a) € = 0.0, (b) e = 0.3, (c) e = 0.5, (d) € = 0.7, and (e)
e = 0.9. The data is obtained for 100 different realizations of
CML with random initial conditions and 40 000 iterations in
each case.

structures falls off exponentially with the lifetime of the
structures. For large lifetimes the number of structures is
larger than the one given by exponential fall. The results
found above for pattern A are also true for pattern B.
We have also studied a coupled map lattice with the
tent map for the function f. The tent map is given by

f(z) =2az if 0<z<1/2,
fl@)=2a(l—2) if1/2<z <1, (3)

where a is the map parameter. The invariant density for
z is constant for the tent map. We have observed similar
behavior of the structures in this case also as in the case
of coupled logistic map lattice. In Fig. 4 we show the dis-
tribution of structures of pattern A as a function of the
structure size in the tent map lattice. As in the logistic

map case, the number of structures decrease exponen-
tially as a function of structure size. For the tent map
lattice this exponential dependence is valid for almost the
entire range of structure sizes.

A comparison can be done between the results ob-
tained for the logistic map lattice and the tent map lat-
tice and the probability of obtaining structures if ran-
dom number generators are placed at each lattice point
to replace the local dynamics. An approximate cal-
culation shows that the probability of obtaining large
structures in the random number lattice of size L is
P,(S) =~ L(26)57'(1 — 26)2, where S is the size of the
structure. The number of large structures we get for the
logistic map lattice and the tent map lattice is much more
than what is given by the probability P.(S).

To conclude, we have shown that coherent structures
exist in coupled map lattices. These structures represent
situations where there are spatial and temporal corre-
lations developed in a coupled chaotic system. Though
such structures are formed locally, the system as a whole
continues to exhibit spatial and temporal chaos. The rea-
son for the formation of coherent structures is probably
due to the coherence introduced in the extended system
due to coupling. This situation is very similar to the
coherent structures observed in turbulence and other ex-
tended systems. In turbunence the viscous term (or dif-
fusion term in other systems) most likely plays the role of
coupling and hence of introducing coherence in the sys-
tem. Our work shows that such a coupling can lead to
coherent structures even when the system as a whole is
turbulent.

The exponential fall in the number of structures we ob-
tain may be related to the exponential decay of the spa-
tial correlation function with spatial distance as shown
in Ref. [17]. However, for large structer sizes there is a
deviation from this behavior.
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